RecQ helicase is important to homologous recombination and DNA repair in Escherichia coli. We demonstrate that RecQ helicase, in conjunction with RecA and SSB proteins, can initiate recombination events in vitro. In addition, RecQ protein is capable of unwinding a wide variety of DNA substrates, including joint molecules formed by RecA protein. The...
Rad52 protein plays a central role in double strand break repair and homologous recombination in Saccharomyces cerevisiae. We have identified a new mechanism by which Rad52 protein stimulates Rad51 protein-promoted DNA strand exchange. This function of Rad52 protein is revealed when subsaturating amounts (relative to the single-stranded DNA concent...
A fluorescence assay was used to measure the processivity of Escherichia coli recBCD enzyme helicase activity. Under standard conditions, recBCD enzyme unwinds an average of 30 +/- 3.2 kilobase pairs (kb)/DNA end before dissociating. The average processivity (P obs) of DNA unwinding under these conditions is 0.99997, indicating that the probability...
In somatic cells, BRCA2 is needed for RAD51-mediated homologous recombination. The meiosis-specific DNA strand exchange protein, DMC1, promotes the formation of DNA strand invasion products (joint molecules) between homologous molecules in a fashion similar to RAD51. BRCA2 interacts directly with both human RAD51 and DMC1; in the case of RAD51, thi...
Escherichia coli RecA is essential for the repair of DNA double-strand breaks by homologous recombination. Repair requires the formation of a RecA nucleoprotein filament. Previous studies have indicated a mechanism of filament assembly whereby slow nucleation of RecA protein on DNA is followed by rapid growth. However, many aspects of this process ...
Although the RecB(2109)CD enzyme retains most of the biochemical functions associated with the wild-type RecBCD enzyme, it is completely defective for genetic recombination. Here, we demonstrate that the mutant enzyme exhibits an aberrant double-stranded DNA exonuclease activity, intrinsically producing a 3 -terminal single-stranded DNA overhang th...
A member of the SF2 family of helicases, Escherichia coli RecQ, is involved in the recombination and repair of double-stranded DNA breaks and single-stranded DNA (ssDNA) gaps. Although the unwinding activity of this helicase has been studied biochemically, the mechanism of translocation remains unclear. To this end, using ssDNA of varying lengths, ...
The Escherichia coli recA protein has been shown to hydrolyze several nucleoside triphosphates in the presence of ssDNA. The substitution of dATP for rATP has significant effects on various recA protein biochemical properties. In the presence of dATP, recA protein can invade more secondary structure in native ssDNA than it can in the presence of rA...
The Escherichia coli RecA protein has been a model for understanding homologous eukaryotic recombination proteins such as Rad51. The active form of both RecA and Rad51 appear to be helical filaments polymerized on DNA, in which an unusual helical structure is induced in the DNA. Surprisingly, the human meiosis-specific homolog of RecA, Dmc1, has th...